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Direct-method formalism to determine atomic structures using electron

diffraction data is here aimed at a general solution of the phase-retrieval

problem, consequently combining electron diffraction (ED) and high-resolution

transmission electron microscopy (HRTEM) patterns in a `domino' fashion.

While there are similarities to conventional (kinematical) direct methods, there

remain major differences; in particular, owing to the dynamical effects in the

data, the ED structure factors prove to be complex and then the positivity of the

reconstructed electron density is no longer a valid constraint for `dynamical'

direct methods. Besides, owing to the dynamical effects, heavy atoms no longer

dominantly contribute to the HRTEM images. Thus, the `dynamical' direct-

methods concept is based on the phase-retrieval algorithm utilizing both the

dynamical ED and the HRTEM data. The fusion of the traditional direct-

method technique, which is described here, allows realization of a full-phase

restoration of complex structure factors. A numerical example, using the

dynamical ED and HRTEM data for (Ga,In)2SnO5 ceramic, shows that the

method is capable of yielding a unique phase-retrieval solution. The clear sense

is that the domino transform algorithm proposed works well and represents

a valuable method for phasing diffraction patterns in electron structural

crystallography using an experiment that is readily performed when the ED and

HRTEM data are collected.

1. Introduction

An application of conventional (kinematical) direct methods

and re®nements for purposes of electron structure determi-

nation raises some fundamental problems. There are some

simple cases, for instance a surface, where such re®nements

are legitimate as a good ®rst approximation, but even here

correct results require the inclusion of dynamical effects (e.g.

Marks & Landree, 1998). It is very well established theoreti-

cally that even one atom layer of a heavy element such as gold

is a `dynamical' scattering unit (see e.g. Buseck et al., 1988;

Spence, 1988), so there are no cases with real samples where

the kinematical approximation is rigorously valid. While

exceedingly thin values such as 2 nm are sometimes reported

for sample thickness used in interpreting experimental high-

resolution transmission electron-microscopy (HRTEM)

images, the actual thickness is certainly larger; the discrepancy

is often due to neglecting terms such as sample vibration or

beam tilt. At the same time, under some optimal imaging

conditions, the HRTEM technique provides real-space infor-

mation toward crystal structures though HRTEM images in

general do not contain true atom positions. On the other hand,

to obtain true real-space information concerning atom posi-

tions, one may explore the direct methods relying on the

diffraction information alone and extracting the unknown

phase information among the structure factors (Dorset, 1995;

Woolfson & Fan, 1995; Giacovazzo, 1998). Most earlier

combinations of HRTEM and direct methods have been

tested neglecting dynamical effects in electron diffraction

(ED) data, namely, the direct methods have been applied

within a kinematical approach (Fan et al., 1991; Hu et al., 1991;

Gilmore et al., 1993; Dorset, 1996; Marks et al., 1997).

Noteworthy is the fact that the ®rst quantitative relation-

ships capable of being used for phasing diffraction patterns via

direct methods were Sayre's equation (Dorset, 1995 and

statistical phase invariants (Cochran & Woolfson, 1955;

Hauptman, 1982). Switching to a set of structure factors,

{U(g)}, the phase set { (g)} with  (g) = Im[ln[U(g)]] and g a

reciprocal-lattice vector, could be determined using the

iterative transform algorithm based on the Sayre-tangent

formula as a convolution equation (namely,  (g) =

Im[ln[�hU(h)U(gÿ h)]] with the known set of moduli {|U(g)|};



see e.g. Dorset, 1995; Giacovazzo, 1998; Landree et al., 1997;

for details). For this, the Sayre-tangent formula is relatively

exact for point-like atomic structures as long as the atom

scatterer positions are not overlapped, which coincides with

the basic assumption of the ED channeling approximation

(Van Dyck & Op de Beeck, 1996; Sinkler & Marks, 1999; Hu &

Tanaka, 1999).

At the same time, the phase information is preserved in the

HRTEM images and can be extracted sometimes using the

Fourier transform (DeRosier & Klug, 1968; Weirich et al.,

1996). Ishizuka et al. (1982) have developed the resolution

improvement and/or phase correction method ®rst proposed

by Hoppe & Gassmann (1968). Combining the information in

the electron micrograph and electron diffraction within the

weak scattering approximation, they have applied the proce-

dure to the model structure of the crystal of copper

perchlorophthalocyanine for determining the phases (signs) of

the structure factors.

The prospects for the least-squares re®nement (Dorset &

Gilmore, 2000) and direct-method technique (Weirich et al.,

2000) to decode structural data from an ED experiment was

recently reviewed in many cases, in most of which dynamical

ED effects were ignored. The work (Sinkler et al., 1998) is

developed into ans example, in which the direct methods

combining with the Fourier transform of the HRTEM image

were used to attempt to solve the phase problem on a sample

of (Ga,In)2SnO5 ceramic.

After that, the two- and three-phase structure invariants, �0

and �2, within the scope of `dynamical' direct methods were

analyzed (Hu et al., 2000; Chukhovskii et al., 2001). It was

shown how the relevant success of applying direct methods to

dynamical ED data can be understood via an `effective kine-

matical approximation' since each of the phase conditional

probability distributions, �0, de®ned for a number of (g, ÿg)

re¯ection pairs, and the phase conditional probability distri-

bution, �2, de®ned for a number of (g, h, ÿg ÿ h) re¯ection

triplets, are proved to display a strong peak in many cases. The

above assertion is obtained using the theoretical probability

background (Hauptman, 1982) and con®rmed by numerical

multislice calculations. Particularly noteworthy is the fact that

the recovered effective dynamical potential may be similar to

the kinematical one but does not have to be and in general will

not be.

In this paper, we push the concept of direct methods one

step further, and apply it using both two-dimensional ED and

HRTEM data sets as constraints for phase restoration. To

apply this concept, the iterative transform algorithm, which

has at its core the Gerchberg±Saxton algorithm (Gerchberg &

Saxton, 1972; see Dainty & Fienup, 1987 as well) and makes

the phase-retrieval procedure in a domino fashion, is

proposed. We believe that no such iterative transform algor-

ithm for direct phasing of the ED complex structure factors

has been previously reported. A prerequisite to solving the

problem herein is to elaborate the appropriate numerical

algorithm that creates a unique phase restoration. For

purposes of this study, some numerical simulations are given

for a sample of (Ga,In)2SnO5 ceramic, which exhibits a

convergence property of the domino iterative transform

algorithm proposed. In particular, the new algorithm that is

described here has been proven to be convergent in the

general case of complex structure factors. Noteworthy is the

fact that its application can facilitate a true determination of

nanometre-size crystal structures combining both the ED and

HRTEM data in a sequential domino manner.

2. Problem foundation. Domino iterative transform
algorithm combining ED and HRTEM data

Aiming to introduce the necessary mathematical formalism

describing the dynamical electron scattering within the scope

of the 1s channeling approximation, we will brie¯y repeat the

derivation of the complex structure factors {U(g)} ®rst given

by Van Dyck & Op de Beeck (1996) and discussed in more

detail in Appendix A of Hu et al. (2000). As discussed in the

paper (Hu et al., 2000), we can write a complete solution for

the electron wavefunction in a thin crystal as a sum of the two-

dimensional channeling eigenstates 	n�R�, where R � (x,y) is

a two-dimensional vector perpendicular to the electron-beam

direction:

	�R; z� � 1�P
n

an	n�R�fexp�ÿi��En=E0��z� ÿ 1g: �1�

The sum in (1) is over the eigenstates labeled n, with occu-

pations an. Each eigenstate as a function of depth z has a

characteristic oscillation frequency, which is determined by

the channeling (Bloch wave) eigenvalue En (E0 being the

incident electron energy and � = �ÿ1). For a thin crystal, this

series solution can be legitimately truncated after including

only the most signi®cant terms [see e.g. Appendix A in Hu et

al. (2000) for details]. For moderate values of sample thickness

and atomic numbers, a further simpli®cation of (1) can be used

for cases in which the atomic columns are well separated in

projection so that the atomic potentials do not strongly

overlap. In such cases, the lowest lying eigenstate Ej (analo-

gous to the j atomic 1s state) mainly contributes to the sum in

the right-hand side of (1), so the electron wavefunction may be

written as (Van Dyck & Op de Beeck, 1996)

	�R; z� � 1� 2i
PJ

j�1

aj	j�Rÿ Rj� expfÿi��Ej=2E0��zg

� sinf��ÿEj=2E0��zg; �2�
where now the sum is over the j atomic positions.

We will now use this form and switch to reciprocal space, the

standard space used in structure analysis. The structure factor

for the g re¯ection takes the form

U�g� � iFg � i
PJ

j�1

Fjg exp�ÿi2�g � rj�; �3�

where

Fjg � 2Vj�g� expfÿi��Ej=2E0��zg sinfÿ��Ej=2E0��zg �4�
is the complex atomic scattering amplitude of the atom labeled

j, rj is its position vector and J is the number of atomic columns

Acta Cryst. (2003). A59, 48±53 Chukhovskii and Poliakov � Domino phase-retrieval algorithm 49

research papers



research papers

50 Chukhovskii and Poliakov � Domino phase-retrieval algorithm Acta Cryst. (2003). A59, 48±53

in the two-dimensional unit cell. Vj(g) is the Fourier transform

of 	j(R ÿ Rj), to a ®rst approximation the kinematical single-

atom structure factor.

Generally, addressed to nanometre-size structural electron

crystallography, the problem of phase retrieval is related to

the complex structure-factor set {U(g)} and the HRTEM

image I(x). They are formed as a result of the plane-wave

propagation through an electron optical system consisting of

selected-area apertures and focusing lens taking into account

all likely aberrations (e.g. defocus, spherical aberration and so

on). The focused electron wave is imaged onto the two-

dimensional (2D) arrays of detectors that speci®cally measure

intensity either in the back focal or in the image plane,

respectively. Intensities measured in the back focal plane are

referred to the ED magnitudes {jU(g)j}, with diverse reci-

procal-lattice vectors g, whereas the intensity distribution I(x)

in the image plane is the modulus squared of the Fourier

transform of the complex structure-factor set {U(g)}. The 2D

periodical function I(x) is the HRTEM image of the crystal

structure. From the mathematical viewpoint, the data array

of {jU(g)j} (and the data array {A(x)} as well, with

A�x� � �I�x��1=2) is non-convex. The non-convexity of both the

underlying sets, {jU(g)j}, {A(x)}, is a main obstacle to applying

the Gerchberg±Saxton-type algorithm for phasing diffraction

patterns directly.

On the other hand, it is physically reasonable, as well as

mathematically precise, to consider that the phase-retrieval

problem amounts to determining the phases of the complex

structure factors from both the arrays (N){jU(g)j}, (N){A(x)},

which may be measured in the back focal plane and the image

plane, respectively, and N is the array rank (the corresponding

array size is equal to N � N).

Thus, in order to overcome the fundamental non-convexity

limitation and, as a result, to avoid numerous redundant

solutions, we will trade off the known Gerchberg±Saxton

method onto the new Gerchberg±Saxton-type algorithm for

phase determination in a sequential `domino' fashion.

Speci®cally, let us introduce the oblique-angled selected-

area constraint sets of (�){jU(g)j, A(x)} for the consecutive

values of � = 2, 3, 4, . . . , N [U(g)g=0 is assumed to be unity for

any �]. If the oblique-angled selected-area array rank � is

considered as a ®xed iteration number, the numerical algor-

ithm scheme search takes the form

���Mk�1�x� � ���A�x� exp�i���'k�x��
���jUk�1�g�j � jInverse Fourier ����Mk�1�x��j
��� k�1�g� � Im�ln�Inverse Fourier ����Mk�1�x����
���Uk�1�g� � j���U�g�j exp�i��� k�1�g��
���Ak�1�x� � jFourier ����Uk�1�g��j
���'k�1�x� � Im�ln�Fourier ����Uk�1�g����;

�5�

where we calculate the (k + 1)th phase sets of

(�){ k+1(g), 'k+1(x)} by use of the preceding kth ones

(�){ k(g), 'k(x)}, and keeping in mind that the ED and

HRTEM sets of (�){jU(g)j, A(x)} are a priori ®xed and do not

depend on the cycle value of k over all the iteration processes

of � (e.g. they are equal to the `experimental' values). The two

®gures of merit (FOM) related to the reciprocal space, R(�),

and real space, X(�), are evaluated at each cycle over k:

R
���
k�1 � ��gjj���Uk�1�g�j ÿ j���U�g�jj=��gj���U�g�j2�1=2;

X
���
k�1 � ��xj���Ak�1�x� ÿ ���A�x�j=��x���I�x��1=2:

�6�

For reference, (�) k(g) is the given phase of the complex

structure factor (�)Uk(g) at the beginning of each cycle k, and

(�) k+1(g) is the new phase calculated at the end of the same

cycle. The calculated phase set of (�){ k+1(g)} is then fed back

into the cycle iteration fashion according to the `¯ow' equation

(5), k = 1, 2, 3, . . . , K, and the range value K is chosen to be

®xed.

Our main focus is on the fact that some important restric-

tions are imposed onto the phase set of (�+1){ k(g)}, speci®-

cally, the phase set of (�+1){ k(g)} contains the subset of

(�){ (g)}, with the array size of � � �, determined within the

preceding iteration of �. And, clearly, the other elements of

the phase set of (�+1){ k(g)} are chosen to be random in the

range of (ÿ�, �) for the ®rst cycle, k = 1, only.

Loosely speaking, the principal idea of the domino phase-

retrieval method is to obtain the phase ®t for the complete

structure-factor set {U(g)} sequentially step by step starting

from the ®rst subsets (2){jU(g)j}, and (2){A(x)}, each of them

has the rank size 2, and for every combined subset

(�){jU(g)j, A(x)}, � = 2, 3, 4, . . . , N, the standard Gerchberg±

Saxton iteration procedure is applied.

Complementarily, we then use the phase consistency check

factor (a `correctness' factor)

C
���
k�1 � 0:5�0gj���Uk�1�g� ÿ ���U�g�j=�0gj���U�g�j �7�

that is calculated in a process of numerical simulations for all

the values of k, and the sum, �0, taken over all the re¯ections

except g = 0.

The C
���
k factor being calculated at each iteration step � as a

function of k provides a means of monitoring the progress of

the code during the entire iteration procedure. The numerical

phase simulation procedure [see equations (5)±(7)] from � = 2

until the ®nal iteration value of N is iterated guiding the

phases as long as the values of R(N) and X(N) reduce to the

consensual estimates. Note that equations (6) play the role of

penalty functions for constraining likely atomic structure

solutions operating with the calculated and a priori known ED

and HRTEM data.

The `domino' idea for the iterative transform algorithm

rests on the restriction of the total number of the likely

solutions for the ED and HRTEM input data set of

(2){jU(g)j, A(x)}, where � = 2, that launch the general iteration

procedure. It is easy to show that in the case of the input

iteration value of � = 2 there are eight different solutions for

the phase set of (2){ (g)}, more precisely, there are the four

different pairs of the complex conjugate structure factors, one

of which is referred to as a true solution [recall that  (g)g=0 �
0]. Going on from the iteration of � = 2 until the ®nal iteration

N via the consecutive oblique-angled selected-area iterations,

the true phase solution holds up to some numerical uncer-



tainties depending on the ®nal iteration number N, whereas

other redundant solutions can be readily detected yielding

inappropriate values of FOM. Presumably, numerical uncer-

tainties of the `correct' phases increase with increasing itera-

tion number (the re¯ection array rank) �, which might be

compensated for by enlarging the cycle range value of K.

Below, the domino iterative transform algorithm above

described is tested numerically with simulated input ED and

HRTEM data and the true solution of the (Ga,In)2SnO5

crystal structure.

3. Numerical simulations. Results and discussion

The test case we consider is a centrosymmetric structure of the

ceramic (Ga,In)2SnO5. The structure is monoclinic with a =

1.169, b = 0.317, c = 1.073 nm and � = 99.00�. The atom posi-

tions within the unit cell obtained from direct methods and

neutron diffraction are presented in Sinkler et al. (1998), the

projected two-dimensional structure of (Ga,In)2SnO5 is

shown in Fig. 1. The incident electron beam propagates along

the b axis and the accelerating voltage is 300 kV.

The complex structure factors related to the proper dy-

namical ED pattern for (Ga,In)2SnO5 were calculated using

the 1s-state channeling approach (see e.g. Hu et al., 2000;

Chukhovskii et al., 2001 for details) for 4.121 nm thickness

(Fig. 2) and 7.291 nm thickness (Fig. 3) along the b axis. The

standard images calculated using the above values of thickness

and 0.01 nm resolution are shown in Fig. 2(a) and Fig. 3(a),

respectively.

To illustrate the convergent features of the new algorithm

guiding the phase determination based upon the ¯ow equation

(5), the data sets of (�){jU(g)j, A(x)} were explored in a

sequential manner from the initial value of � = 2 up to the two

different ®nal iteration values of N, namely N = 20 and N = 40,

respectively. Figs. 2(b) and (c) and Figs. 3(b) and (c) show the

calculated unit-cell images, (20)I(x) and (40)I(x), obtained as the

modulus squared of the Fourier transform of the unique

phase-recovered structure-factor sets of (20){U(g)} and

(40){U(g)} using the domino iterative transform algorithm

detailed above. It is interesting that in the case of the iteration

number N = 20 the real-space unit-cell images [see Figs. 2(b),

3(b)] do not keep the centrosymmetry property as a result of

the insuf®cient spatial resolution of order of 0.05 nm (it should

be noted that the atom positions need not coincide with nodes

of a numerical net) rather than as aa result of the phase-

retrieval solution based on the present iteration transform

algorithm application. As an example, Fig. 4 shows the

behavior of the calculated parametric plots of the R-FOM

versus a `correctness' C factor [cf. equations (6)±(7)]. It is

found that, in the case of the domino iterative transform

algorithm application to the solution of (Ga,In)2SnO5, the

calculated R-FOM and C factor achieve the appropriate

values of order of 10ÿ5 and 10ÿ7 for the cycle range K = 100
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Figure 1
Structure of (Ga, In)2SnO5 viewed along �0�10�.

Figure 2
Images of (Ga, In)2SnO5 structure (2D and 3D plots) showing the phase-
retrieval solution for the iteration range of N = 20 in (b) and the phase-
retrieval solution for the iteration range of N = 40 in (c) in comparison
with the standard gauge image in (a) calculated for the iteration range of
N = 100. The cycle range of K is 1000. The sample thickness along the
b axis is 4.121 nm.
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used for the calculated images shown in Figs. 3(b), (c). It is

worth noticing that, in the case of the cycle range value of K =

1000 taken for the numerical simulation of the real-space

structure images in Figs. 2(b), (c), the corresponding values of

R-FOM and C factor are practically equal to zero (less than

10ÿ27).

Thus, with the trends of the R-FOM reduction observed and

con®rmed by the C-factor reduction behavior, the domino

iteration transform algorithm by consecutively combining the

ED and HRTEM data gives a good convergence in the phase-

retrieval procedure. It should be noted that, depending on the

initial random phases of an input phase set of complex

structure factors, for the initial iteration value of � = 2 the

numerical code proposed generates redundant solutions too.

Fortunately, they can be effectively discriminated by imposing

a `break' condition incorporated within the complete iteration

procedure, for instance, by choosing inappropriate barrier

values of R-FOM equal to 0.01.

4. Concluding remarks

In this paper, the goal of our study is to justify the application

of the domino iterative transform algorithm detailed above for

phasing diffraction patterns. The main point of the new

numerical code is that the latter provides the robust unam-

biguous iterative procedure, at least for two-dimensional

phasing problems, by operating with the ED and HRTEM

data as the physically measured constraints. Speci®cally, in

what is referred to as a general phase-retrieval problem, the

present domino method can be considered as a synthesis of

the diverse direct methods, which are widely explored for

electron structure determination (Dorset, 1995; Weirich et al.,

2000). Numerical simulations of the crystal model structure

show that, unlike the direct methods earlier utilized, the

routine algorithm by using the composite input ED and

HRTEM data sets in a domino fashion is reasonable from the

physical viewpoint and does not depend on any assumptions

(e.g. the weak-scattering approximation) and primary models

of the crystal structure in question to restore phases of the

complex structure factors. Generally, the present algorithm

code is proven to be convergent and successful for solving

phase-retrieval problems (at least in the case of the two-

dimensional data sets). It seems likely that even complicated

crystal structures, for which parts of some re¯ections are not

available to be measured, can be solved in this way by

extending the feasible complex structure factors to unmea-

surable ones by means of the Sayre equation.

Figure 3
Images of (Ga, In)2SnO5 structure (2D and 3D plots) showing the phase-
retrieval solution for the iteration range of N = 20 in (b) and the phase-
retrieval solution for the iteration range of N = 40 in (c) in comparison to
the standard gauge image in (a) calculated for the iteration range of N =
100. The cycle range K is 100. The sample thickness along the b axis is
7.291 nm.

Figure 4
Plot of the factor ÿln R versus a `correctness' factor ÿln C calculated
within the ®nal set of phase assignments using the two ranges of structure
factors: (a) N = 20, (b) N = 40 (the cycle range of K = 100). The sample
thickness along the b axis is 7.291 nm. The curved parts with the largest
(ÿln R) and (ÿln C) values indicate that the present phase-retrieval
algorithm provides a full restoration of phases.



A few ®nal comments are appropriate here about the

implementation of the present algorithm code to the practical

structural analysis using ED and HRTEM data. As is pointed

out, the ED dynamical effects were taken into consideration

within the scope of a 1s electron channeling approach for the

input ED data. It needs to be remembered that the validity

and application prospect of the domino phase-retrieval algo-

rithm presented are closely related to the ED being dominated

by 1s channeling states. This is only true for moderate values

of sample thickness and atomic numbers. In addition to

sample thickness, the accelerating voltage is another adjus-

table parameter. As the voltage becomes higher, there are

more strongly bound states (e.g. 2s, 3s), which complicate the

ED (Hu et al., 2000). Yet there are many structures where 2p

states are important if the sample is tilted off the zone axis.

The question of whether the domino phase-retrieval algorithm

has any validity in these cases remains as a topic for future

research.

Also, testing the present algorithm code, we did not include

the aberration phase distortions of the electron optical system,

the values of which are in general known a priori to form

relevant HRTEM images (cf. Spence, 1988) and we ignored a

possible thickness variation within the sample area selected,

albeit the latter might be minimized using the convergent-

beam patterns.

With these con®nes of the input ED and HRTEM data sets,

we do not claim anything except that the domino algorithm

code for the phase retrieval of structure factors is really

convergent and works well. How well it will work in practice,

particularly using the input experimental ED and HRTEM

data, remains to be seen and is then of special interest for

future work.

It should once more be stated in conclusion that the

convergent feature and feasibility of the numerical solution of

the crystal model structure tested in the general case of

complex structure factors imply that direct methods may be

properly modi®ed to facilitate further the practical electron

structure analysis, particularly by applying the domino itera-

tive transform algorithm technique, a good topic for future

work.

One of authors (FNC) gratefully acknowledges J. J. Hu,

L. D. Marks and W. Sinkler for stimulating discussions of

direct methods addressed to phasing diffraction patterns for

purposes of electron structure determination.
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